Precipitation Variability Across Satellite Field-of-Views (FOVs) Derived from Ground-Based Polarimetric Radar Observations

Christopher R. Williams^{1,2}, Walter A. Petersen³, David B. Wolff⁴ and V. Chandrasekar⁵

¹University of Colorado Boulder

²NOAA Earth System Research Laboratory (ESRL)

³NASA Marshall Space Flight Center (MSFC)

⁴NASA Wallops Flight Facility (WFF)

⁵Colorado State University

Supported by NASA Precipitation Measurement Mission and the NASA Global Precipitation Measurement (GPM) mission **Ground Validation (GV)** Program

University of Colorado Boulder

Cooperative Institute for Research in Environmental Sciences
UNIVERSITY OF COLORADO BOULDER and NOAA

Motivation

- Typically, assume the radar pulse volume is uniformly filled with hydrometeors.
- This assumption breaks down as the radar pulse volume increases.

Questions:

- What is the precipitation variability across the 5 km GPM Dual-Frequency Precipitation Radar (DPR) footprint?
- To help rainfall retrieval algorithms, is there enough statistical signal to parameterize sub-volume variability using neighboring radar observations? (aka, downscaling)

NASA/JAXA Global Precipitation Measuring Mission (GPM) Core Observatory

Precipitation Variability at different scales

High resolution NASA *Ground Validation* (GV) Program

ground-based radar

observations

Simulate larger volume satellite observations

Precipitation Variability at different scales

Outline of Presentation

- Definition of Terms
- Impacts of sub-FOV variability on satellite algorithms
- Power-law formulation in PR & DPR algorithms
- NASA Ground Validation (GV) Program Observations
 - Describe scanning radar data set
 - Simulate Ku/Ka-band reflectivity and specific attenuation
 - Simulate DPR Field of View (FOV)
- Statistics: FOV vs. 3x3 neighboring pixels
- Impacts of NUBF on PIA SRT estimates
- Concluding remarks and future work

Definition of Terms

- Instantaneous Field-of-View (IFOV or FOV)
 - Radar pulse volume weighted by
 - antenna pattern (cross-beam or spatial)
 - receiver bandwidth (along-beam or range)
- Non-Uniform Beam Filling (NUBF)
 - Precipitation variability within FOV

Fig. 1. Concept of storm model.

(Kozu & Iguchi 1999)

Impact of NUBF on Satellite Algorithms

- Impact #1: Area averaging of rain rate and reflectivity
 - From Jensen's equality, and concave functions (b < 1), averaged rain rate < R > and averaged reflectivity < Z >:

$$\langle R \rangle = \langle aZ^b \rangle \le a \langle Z \rangle^b$$

Magnitude of the inequality increases with spatial variability

- Impact #2: Path Integrated Attenuation (PIA) is underestimated
 - Narrow columns of large Z have larger path integrated attenuation which reduce measured Z at further ranges in that column
 - Area average specific attenuation k [dB/km] is not a simple relationship:

$$Z_m^{top} - Z_m^{bottom} \neq (2\Delta ht)k$$
,

where Δht is the distance between the two measurements

Note that multiple scattering modifies Z_m and k in complex ways within the FOV. NUBF occurs before multiple scattering occurs (at 5 km scales). Thus, NUBF is a pre-condition for multiple scattering (Battaglia et al. 2015)

PR & DPR Algorithm Formulation

Power law relationships:

$$k-\mathcal{Z}$$
 $k=\alpha\mathcal{Z}^{\beta}$ $[k]=[dB/km], [\mathcal{Z}]=[mm^6/m^3]$ $R-\mathcal{Z}$ $R=a\mathcal{Z}^b$ $[R]=[mm/hr]$

 Solver module based on Hitschfeld-Bordan method (Iguchi & Meneghini 1994; Iguchi et al. 2000)

$$k = \varepsilon \, \alpha \mathcal{Z}^{\beta}$$
$$R = \varepsilon' a \mathcal{Z}^{b}$$

- Solver module adjusts ε until convergence
 - DSD adjustment
 - NUBF adjustment (larger of the two adjustments)

Quantifying NUBF Variability

- Kozu & Iguchi (1999) used tropical TOGA-COARE scanning radar observations to relate field-of-view (FOV) variability with variability of surrounding FOV mean values.
- Two-pass algorithms:
 - First pass provides estimates of neighboring FOVs that are used to parameterize sub-FOV variability
 - Second pass includes NUBF parameterization
- NUBF variability parameterized using coefficient of variation (cov) cov = standard deviation / mean
 - Notation:

"FOV cov" = sub-FOV variability
"3x3 cov" = neighborhood variability

Question:

Are there relationships between FOV cov and 3x3 cov in naturally occurring rain?

Ground Based Radar Observations

- NASA Global Precipitation Measurement (GPM) satellite sponsored Ground Validation (GV) field campaign
- Integrated Precipitation and Hydrology Experiment (IPHEx)
- Southern Appalachian Mountains (North & South Carolina, USA)
- May-June 2014

PPI Scan Strategy

3 elevation angles (1.5°, 2° and 3°) 360° azimuth rotation (6°/s) Maximum range 150 km Limit data to 60 km: height is ~1.75 km AGL 1° beam width (~1 km breadth @ 60 km 125 m range resolution

This analysis used:

3° PPI scan

3 minute temporal resolution

NASA S-band Polarimeteric Radar (NPOL)

Converting Raw Data into 1x1 km Grid

- Polarimetric samples in cylindrical coordinate:
 - Reflectivity: Z_h [dBZ]
 - Differential Reflectivity: Z_{dr} [dB]

Grid PPI scans to 1x1 km

Gaussian weight

6 dB loss at 1 km

Raw Observations (range, azimuth)

Reflectivity

km

1x1 km grid

DSD Parameters (1x1 km)

Modified Gamma shape raindrop size distribution:

$$N(D) = N_w \left[\frac{6}{4^4} \frac{(\mu + 4)^{\mu + 4}}{\Gamma(\mu + 4)} \right] \left(\frac{D}{D_m} \right)^{\mu} exp \left[-(\mu + 4) \left(\frac{D}{D_m} \right) \right]$$

With parameters

 N_w – Normalized number concentration [#/mm/m³]

 D_m – Mean volume-weighted diameter [mm]

 μ – Shape parameter

Comparisons with IPHEx disdrometers, GV found relationships:

$$D_m = 0.1887 Z_{dr}^3 - 1.0024 Z_{dr}^2 + 2.3153 Z_{dr} + 0.3834$$

$$N_w = 35.43 \left[10^{(Z_h/10)} \right] D_m^{-7.192}$$

• Shape parameter assumed dependent on D_m (Williams et al. 2014)

$$\mu = \frac{D_m^{0.72}}{0.09} - 4$$

Estimate rain rate

$$R = \frac{6\pi}{10^4} \sum_{D=0}^{D_{max}} N(D)D^3 v(D)\Delta D$$

DSD Parameters & Rain Rate (1x1 km)

Simulate Ku/Ka-band Measurements

- **Input**: DSD parameters (N_w, D_m, μ) at each 1x1 km
- Model: NASA GPM T-matrix scattering tables (Liang Liao)
- Output: Simulated 13/35 GHz (Ku/Ka-band) at 1x1 km:
 - Intrinsic reflectivity: Z(Ku) & Z(Ka) (no atten) [dBZ]
 - specific attenuation: k(Ku) & k(Ka) [dB/km]

Rayleigh Reflectivity (Observed)

Simulating Satellite Field-of-View

- TRMM and GPM antenna beamwidths at Earth's surface are 5 km diameter
- Simulate radar field-of-view (FOV)
 - Use Gaussian weighting with 6 dB loss at 5 km
 - Input: 1x1 km resolution
 - Output: 5x5 km resolution
- With each FOV, calculate:
 - Mean value
 - Standard deviation
 - Coefficient of variation
 - cov = standard deviation/mean
- Quantities:
 - R: Rain rate
 - Z(Ku): Ku-band reflectivity
 - k(Ku): Ku-band specific attenuation

Example of Simulated 5 km FOV

Calculate FOV mean value and sub-FOV variability

Analyze Rain Filled 3x3 Neighborhoods

- Want to calculate statistics with only raining pixels
- Each 5x5 km FOV is classified as either:

Outside FOV: Z(Ku) < 20 dBZ no precipitation in FOV

Edge FOV: $Z(Ku) \ge 20$ dBZ and at least one neighbor is Outside FOV

Inside FOV: $Z(Ku) \ge 20$ dBZ and all 8 neighbors have $Z(Ku) \ge 20$ dBZ

Only Inside FOVs are analyzed

Maps of FOV and 3x3 Estimates

FOV and 3x3 Variability (Individual Scan)

Is there a relationship between 3x3 variability with FOV variability?

(Downscaling)

- For an individual scan:
 - Scatter plots of FOVcov vs. 3x3cov

FOV and 3x3 Variability (Storm)

15-May-2014 Storm event

- 12,520 valid 3x3 domains
- Circles: most frequent occurrence
- Vertical lines: 25-to-75 percentiles

Impact of NUBF on Satellite Algorithms

- Impact #1: Area averaging of rain rate and reflectivity
 - From Jensen's equality, and concave functions (b < 1), averaged rain rate < R > and averaged reflectivity < Z >:

$$\langle R \rangle = \langle aZ^b \rangle \le a \langle Z \rangle^b$$

Magnitude of the inequality increases with spatial variability

- Impact #2: Path Integrated Attenuation (PIA) is underestimated
 - Narrow columns of large Z have larger path integrated attenuation which reduce measured Z at further ranges in that column
 - Area average specific attenuation k [dB/km] is not a simple relationship:

$$Z_m^{top} - Z_m^{bottom} \neq (2\Delta ht)k$$
,

where Δht is the distance between the two measurements

Note that multiple scattering modifies Z_m and k in complex ways within the FOV. NUBF occurs before multiple scattering occurs (at 5 km scales). Thus, NUBF is a pre-condition for multiple scattering (Battaglia et al. 2015)

Summary: 3 Scales: 1 km, 5 km & 3x3

- 1x1 km scale:
 - Assume rain is uniform over 1x1 km horizontal scale
 - Construct fundamental k-Z and R-Z power-law relationships
- 5x5 km scale: Field-of-View (FOV)
 - DPR beamwidth at Earth's surface is 5 km
 - Gaussian weighting with 6 dB loss at 5 km
 - With each FOV, calculate:
 - Mean value
 - Coefficient of variation cov = std/mean
- 3x3 Neighboring FOVs
 - 3x3 coefficient of variation

Fig. 1. Concept of storm model.

1x1 km Data & Horizontal Uniform

• 1x1 km: Determine k-Z, k-R, and R-Z relationships

$$k = 0.0242 R^{1.069}$$
 (Ku-band) $[k] = [dB/km]$
 $k = 0.2213 R^{1.024}$ (Ka-band) $[R] = [mm/hr]$

• 5x5 km: Areal average rain rate

$$< R > = \sum G(\bar{x}) R_{1x1}(\bar{x})$$
 where $G(\bar{x})$ is the antenna weighting function

Assume horizontal uniform rain (no NUBF)

$$< R > = R_{uniform} = R_u$$

 $< k > = k_{uniform} = k_u = c < R >^d$
 $PIA_{uniform} = (2 \Delta ht) k_u$ [PIA] = [dB]
where $\Delta ht = 3$ km in this study

PIA Surface Reference Technique (SRT)

 Surface return power is equal to the "clear" return reduced by the precipitation attenuation factor A:

$$\sigma_{meas}^{0} = \sigma_{clear}^{0} \sum G(\bar{x}) A(\bar{x}) \qquad \text{[scaler: } 0 \leq A \leq 1\text{]}$$

$$= \sigma_{clear}^{0} \sum G(\bar{x}) 10^{(-0.1)(2 \Delta ht)k(\bar{x})}$$

$$[A = 0 = \text{extinguished}]$$

$$[A = 1 = \text{no attenuation}]$$

SRT Attenuation factor:

$$A_{SRT} = \sigma_{clear}^0 - \sigma_{meas}^0$$

• SRT PIA [expressed in dB]:

$$\begin{split} PIA_{SRT} &= -10log\left(\frac{\sigma_{meas}^{0}}{\sigma_{clear}^{0}}\right) \\ &= 10log\left(\sum G(\bar{x})10^{(-0.1)(2\;\Delta ht)k(\bar{x})}\right) \end{split} \quad \text{[dB]} \end{split}$$

Rain Rate from Measured PIA

• The measured PIA_{SRT} could contain NUBF:

$$PIA_{SRT,non-uniform} = PIA_{SRT,nu}$$

• Assume $PIA_{SRT.nu}$ is "correct", then rain rate is:

$$PIA_{SRT,nu} = (2 \Delta ht)k_{nu} \rightarrow k_{nu} = \frac{PIA_{SRT,nu}}{(2 \Delta ht)}$$

$$R_{nu} = \left[\frac{k_{nu}}{c}\right]^{\frac{1}{d}}$$

Rain Rate at FOV Resolution

Rain Rate at FOV Resolution

Specific Attenuation at FOV Resolution

Rain Rate at FOV Resolution

PIA SRT Impacted by FOV variability

PIA SRT Impacted by 3x3 variability

Dual-Frequency PIA SRT

Can we use dual-frequency PIA_{SRT} to infer sub-FOV variability?

Ratio of
$$PIA_{SRT}$$
: $p = \frac{PIA_{SRT}(Ka)}{PIA_{SRT}(Ku)}$

For uniform FOV and DSD parameters (not power-laws):

$$p = \frac{PIA_{SRT}(Ka)}{PIA_{SRT}(Ku)} = f(D_m, \sigma_m)$$

 $p \sim 6$ for ratio of power-laws

PIA (Ka) vs. PIA (Ku)

Concluding Remarks and Future Work

Summary of conclusions

- Sub-FOV variability linearly related 3x3 FOV variability
- Correlation was only approximately 0.6
- NUBF parameter could be used as a statistical constraint in a probabilistic algorithm, but not in deterministic algorithms
- Actual performance depends on algorithm logic and cost minimization procedure

Future Work

 Investigate deviation from expected (uniform FOV) dualfrequency PIA ratio as NUBF variability parameter

